Tag Archives: tumour baby

Building a Stock of PHGL Tumour Baby Cells ….slowly

My Tumour Baby cells still remain very sluggish and slow to replicate. I’ve been checking in regularly to chart their growth.

Tumour Baby Cells 17/09/21

Tumour Baby Cells 17/09/21

Brightfield microscope images of PHGL TB Cell Growth 17/09/21

As they have continued to grow, they have started to look less healthy and consistent. They remind me of gamma irradiated 3T3 cells (mouse fibroblasts that have been irradiated to stop replicating).  However, this could also be the result of using media that is not ideal, as we have been using some existing (expired) stock supplies of DMEM while we are waiting for our order to arrive.

Tumour Baby Cells 20/09/21

Tumour Baby Cells 20/09/21

Brightfield microscope images of PHGL TB Cell Growth 20/09/21

By 21/09/21 I decided there were enough cells to split into a second flask and freeze down one vial of cells. This will replenish the vial we used and bring our stock up to three vials.

Tumour Baby Cells 21/09/21

Tumour Baby Cells 21/09/21

Brightfield microscope images of PHGL TB Cell Growth 21/09/21

Since the Stroke team mainly work with HBVPs, I reviewed standard protocols for fibroblasts to determine an optimum freezer mix. The recommendation from a number of sources is to include a higher rate of FBS at 30%, 10% DMSO (anti-free agent) and 70% media with a min. of 1 x 106 cells. I made up a total of 1.5mL freeze mix (including cells).

When I passaged the cells, I added 1mL new media to the cells solution. Since the cells were not 80 – 90% confluent, I decided to split them at a rate of 2/3.  This means that the final freeze mix was: 150μL DMSO, 450μL FBS, 300μL media plus 600μL of cell mix. 1mL of this solution was added to cryovial and placed in a freeze box in the -80 degree freezer to be transferred into liquid nitrogen in the next day or so.

Since the cells were precious, I added the remaining cell freeze mix to a T25 flask with 5mL fresh media. There were also a few stubborn cells in the original T75 flask, (post passage),  so I added 10mL new media to see if any of them might grow.  Finally, the remaining 400μL cell mix (without freeze medium) to a new T75 flask with 10mL media.

At this point I had made up fresh DMEM media with the new batch of media, but decided to ‘wean’ the cells onto the new media at a 50/50 ratio of old to new. I am hoping that the new media will help the growth rate of the cells.

Tumour Baby Cell Growth

I checked in on the tumour baby cells to see how they are growing. This will also help with an estimation of when they need to passaged and I can make up some more frozen stocks.

Overall, they are looking pretty good 🙂 Yay!

Tumour Baby Cells

Brightfield microscope image of Tumour Baby Cells P1 on 14/9/21

They are still a bit sparse, but will likely be ready for passage/freezing this Thursday. That is perfect timing!  I will hopefully be able to make up 3 – 4 vials plus one T75 flask. I might plate them out sparsely again as they will need to grow Friday/Sat/Sun without passaging.

Tumour Babies – rise up!

My tumour baby cells are looking good!  So far there are no signs of infection which is excellent, excellent news.

Tumour Baby Cells

Tumour Baby cells – thawed 10/9/21 – viewed 13/9/21

They have been growing for a few days and although they are sparse and sluggish, it is common for primary cells to take a while to recover from freezing. The plan is to grow them up and freeze down some more vials. At the moment, we only have 2 x vials in cryostorage, so there is pressure to build up some additional stocks. I anticipate that they may be ready for passaging at the end of the week.

 

Post-holiday update

I have returned from the festive season break and started back in the lab.

Let’s start with the good news! There is no visible infection in any of the vessels including cut glass dishes and vials. My flasks are doing OK and there are cells actively growing (despite evidence of cell death indicated by cell debris).

Now for the bad news…

There has been mass death. Despite the slow growth rates of my cells, 3 weeks is just too long to leave cells starving and without ongoing maintenance. That said, there is evidence (in cell debris) that a good number of cells did grow in the vessels during my absence. This shows that the overall plan should work.

The plan for today is:

  1. Make up new media and FBS aliquots.
  2. Feed cells (i.e. replace media with fresh solution)
  3. Remove dead cells from all cut glass dishes.
  4. Collect dead cells via centrifugation and fix in PFA.
  5. Fix cells in some of the older flasks, fix in PFA and stain with H&E.

If I have time, I will also:

  1. Bleach and wash glassware and prepare for autoclaving.
  2. Autoclave glassware.